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ABSTRACT

The subject of this dissertation is the numerical integra-

tion of the initial-value problem for the non-linear Vlasov

equation. The Vlasov equation is used to describe the dynamics of

a "collisionless", one-dimensional, classical electron gas confined

between two perfectly reflecting boundaries. 0nly the long-range

Coulomb interactions of the electrons are considered; effects

associated with the discrete structure are neglected.

The numerical results obtained for non-linear Landau damp-

ing compare well with similar results obtained by Knorr. A

general statement of the results on stable initial conditions is:

As the degree of non-linearity of the initial conditions is

increased, the deviation from linear Landau damping appears sooner

and is more severe. In some cases damping was observed to cease.

Curves showing the time dependence of the damping decrement are

derived and compared with predictions of non-linear theories.

New results obtained in this study include the observation

that for strongly non-linear cases, the damping of the electric
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field causes an initially Maxwellian f (v, O) to develop a
0

peak in the neighborhood of the phase velocity; strong growth

of the second harmonic is seen after f (v, t) develops such a
o

peak.

Also new in this study is the interpretation of the develop-

ment of a certain class of strongly unstable initial conditions as

approaching an inhomogeneous equilibrium.
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I. INTRODUCTION

i.i General Remarks

It is the purpose of this dissertation to study the dynamics

of a plasma in the "collisionless" limit. The physical require-

ment is that the number of particles in a Debye sphere be very

large. Collective effects will be included in a self-consistent

manner, but close encounters between particles will be ignored.

Also we will consider only processes which occur on a time scale

of the order of the electron plasma frequency, so that ion

inertial effects can be ignored.

The substance of the material to be discussed consists of

an investigation of non-linear effects in the initial value

problem for Vlasov's equation for both stable and unstable equilibria

using numerical methods. We solve for the electric field and for the

electron distribution function as a function of time.

The present numerical work on the non-linear Vlasov equation

is comparable with work done by Knorr [1963a, b] and, to a lesser

extent, Kellogg [1965], but is quite different in approach. The

points of agreement and disagreement of the present work with that

of Knorr will be discussed. It should be emphasized that the



problem considered in this work does not include any effects

connected with the discrete structure of the plasma, and should

be regarded as distinct from prior numerical calculations on

"charged sheet" plasma models which necessarily include collisions

[Dawson, 1962; Smith and Dawson,1963; Buneman,1959; Buneman,

1963; Burger, 1965].

1.2 Vlasov Equation: Specializa-
tion to One Dimension

A "collisionless" plasma is described in the electrostatic,

or c -- _ limit, by the Vlasov equation, also known as the

correlationless kinetic equation, which is

8f (_, _, t) + _ • 8f - e _ (_, t) . $f = 0 (i .i)

kxE , is the self consistent eld irl the _, ....

8 • E_(_ t) = 4w No e (i - J f (x, v, t) d_) (1.2)

?x

The plasma is assumed to be macroscopically neutral with a uniform,

"smeared out", immobile ion background of density N o • The

f (_, _, t) is the electron distribution function, -e the electronic



charge, and m the electron mass. Welimit the problem to solving

(i.i) and (1.2) in the infinite domain whenf (_, _, O) is specified.

The class of f (_, _, O)'s to be considered is restricted to small

perturbations which vary spatially in only one direction (say, x)

about a spatially-uniform initial distribution. Wenow define a

reduced or one-dimensional distribution function f (x, v, t) which

is related to f (_ _, t) by

f (x, v, t) = JJ dVydvz f (x, v, t) (1.3)

and which satisfies

Sf (x_ v_ t) $ v Sf (x, v, t) eE (x, t) $f (x, v, t)
_t _x m _v

= 0 (1.4)

and

co

_E (x_ t) : 4w N e (1 - ]" f (x, v, t) dv) (1.5)
?x o

The problem is to find f (x, v, t) and E (x, t), given f (x, v, 0).



In the next section we describe Landau's perturbation-theoretic

solution to (1.4) and (1.5).

1.3 Linearization: The Landau

Solution

The linearization of the Vlasov equation consists of expand-

ing the distribution function, f (x, v, t), about a spatially

uniform equilibrium as

f (x,v, t) = f(O)(v)÷ _ f(1)(x,v, t)

÷ _2 f(2)(x,v, t) ÷ .. (i .6)

where _ << i, and J" dv f(O)(v) = i. No externally produced electric

fields are allowed, and E (x, t) has a similar expansion

E (x, t) = g E (I) (x, t) • [_ E '_' (x, t) . ... (l.7)

The expansions (1.6) and (1.7) are then substituted into (1.4) and

(1.5), and terms of 0 (_2) or higher are neglected, which results

in

8f (I) e E (I) (x, t) 8f (0) (v) 08f(1) (x, v, t) + v =
_t _x m 8v

(1.8)
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and

_E (1) (x, t) = -4w N e J" f(1) (x, v, t) dv (1.9)
_x o

We require that

I"f(0)(v)dv = i, _d j f(1)d _ dv : 0 (1.10)

It is important to note that, in (1.8), terms of the form

E (I) (x, t) _f(1)(x_ v_ t)
Sv have been neglected. In order for the

solutions of (1.8) and (1.9) to be an accurate representation of

f (x, v, t), the terms neglected must be small compared to the

terms retained; hence we require

i_(1)_f(o) _(1)_f(1)
8v

or that

_f(1)/_vI << 1 (1.11)
R : i _f(o)/_

The conditions under which (i.ii) is not satisfied will be discussed
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further in section 1.4; we only observe now that it represents

one potential shortcoming of the linearized equations (1.8) and

(1.9).

Another possible difficulty with the linear solution to the

Vlasov equation comes from the assumption that f(O) (v) is

independent of time, which neglects the effect of the initial

spatial perturbation in causing changes in the spatially-uniform

part of f. It is shown numerically in Chapter IV that even for

f(1)

very small ( _ = 0.04) perturbations, the spatially uniform

part of f does change appreciably, especially around the "resonant"

velocity.

We now follow Montgomery and Tidman [1964] in describing

the Landau solution. Landau's [1946] procedure for solving (1.8)

and (1.9) consists of first applying the Fourier transforms.

(1)f(1) (X, V, t) : J" e f (v, t) dk

° 4E (I) (x, t) = J" eikx l) (t) dk

(i.12)

obtaining



5_ + ikv m Sv

and

ik_ I) (t) -4WNO fk(-- eJ i) (v,t) _v (_.i_)

Landau next applied a Laplace transform to fk(I) and E(I) as

.(i) (v, t) dt (i.15)fk(I) (v, p) = J" e-pt Ik
o

and

_i) (p) -- [ e-Pt _i)(t)dt (1.16)
o

where it can be shown under weak restrictions, that the integrals

converge for Re p > some positive constant [Backus, 1960]. Using

(1.15) and (1.16), we obtain from (1.13) and (1.14) the expres-

sions

f( _ i k(1)i) (v, p) p + ikv If (v, t = O)

e (1) _f(o)÷- E (p)
m Sv

] (_._7)



and

e i dv o(i)(v,t = 0)
4w No _ Iki) (p)= k D (k,p) _ p + ikv (i.18)

4w No e i _ dv

where D (k, p) = 1 - mk _t P ÷ ikv (1.19)

The solution of (1.18) for the quantity of interest E_ I){ (t)

consists of using the inversion theorem for Laplace transforms_

namely

1 _+i_ ePt 4 l) (p)dp (1.20)_i) (t) - 27i

where the contour is taken to the right of all the singularities

of the integrand. The integrals in (1.17-1.20) are far too

uun_±_d to do for _ _ ...... I _ _ _ _(0) (_v] f_ _Y_mp] _,

Landau observed_ however; that some information about

4 1) (t) in the limit t -_ could be extracted from (1.20) by

deforming the integration contour under certain restrictions on

the analytic properties of the initial conditions.

We observe that the distributions we shall deal with in the later

numerical calculations are all entire functions of velocity and

thus satisfy the analytic requirements of Landau for the continua-

tion of the transforms.
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Landau was able to show in the t _ _ limit that the

Ek(1)(t) t_----_7 R. e-iwi(k)te-yi(k)ti i (1.21)

where

= Pi (k)

(i .22)

and Pi (k) are the zero of the analytically-continued Landau

denominator or "plasma dielectric function",

D (_,Pi (k)) = 0 (_.23)

Ri is the residue:

Ri = lim (P- Pi (k))E(I) (k,p) (1.24)
P _ Pi (_)

We restrict ourselves to the case of simple zeros of D (k, p).

For a further exposition and criticism of Landau's analytic

continuation procedure, the reader is referred to the following
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references: Landau [1946], Backus [1960], Hayes [1961], Weitzner

[1963], Saenz [1965], Taylor [1965].

Nowif 7i (k) > O, wenotice that in the long-time limit,

the Ek(1)-(t) is exponentially damped. This phenomenonis called

"Landau damping" If 7i (k) < O, the equation (1.21) predicts

growing electric fields and is an electrostatic instability.

Figure 40 shows the solutions, 7 (k) and w (k), of (1.23)

for a Maxwellian f(O) (v) and for k = 0.25 to 1.0. (Numerical

data for Figure 40 is from Table i of Gary [1966].)

The solutions of (1.23) for arbitrary f(O) (v), small k,

are

2

3k2 Vth _ w (1 25)2 2

W = w (I_ + 2 ÷ "'" J' --k >> Vth' "
W
P

and

2  f(o) I/7 (k) = _w w ( _ ) Sv (i k dw ),
2 v= k w dk

Z << i (1.26)
W

Specializing (1.26) to the case of a Maxwellian f(O) (v) yields
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(k) = (D
P

1 k )2 3)

(1.27)

Now _/k is just the phase velocity of the plane wave

solution for the kth Fourier component of the electric field_

hence one may conclude that the kth wave will damp if

 f(o)
_V

is negative or will grow if

 f(o)
_V

is positive. The qualitative

physical interpretation which is given to damping or growth in terms

f(0) (w(k)/k) is that the particles with velocities slightlyof_

greater than w(k)/k give up energy to the wave and those with

velocities slightly less than w(k)/k gain energy from the wave.

_f(O) (_(k)/k)
If 8v is negativ% there are more particles gaining

energy from the wave then losing energy and the wave damps; if

_f(O) (_(kl/k)
is positive_ then the former situation is reversed

8v

and the wave grows. It will be evident in the numerical data to be
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presented in Chapter IV that this intuitive picture is only in an

approximate sense correct. It applies best to the situation when

the phase velocity of the wave, w(k)/k, is >> the thermal velocities

of the particles. Whenw(k)/k becomescomparable to a thermal

velocity_ the situation becomesmore complicated. In Dawson's

[1961] model for the stable case, this idea is expressed as the

plasma oscillation being maintained by the entire plasma and the

dampingbeing causedby the "resonant" particles. It is observed

in several of the stable cases, as described in Chapter IV, that

there are someparticles energized for all v < w(k)/k. The

largest effect is observed, however, near w(k)/k.

The presence of an electrostatic instability requires that

there be at least a relative minimumof f(O) (v), i.e., streaming.

This theorem is demonstrated by Jackson [1960]. The necessary

and sufficient condition for growing waves (i.e._ 7 k_j _ _j _

Penrose's [1960] criterion:

= I f(O)(v) - f(O) (_) } > 0 (1.28)__ dv (v_ _12

where

f' (v) I = o _d f" (v) I >o
v=_ v=_
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1.4 Breakdown of Linearization

There are several ways which the linearized solution can

break down. The first as suggested in section 1.3 is for the

terms neglected in the linearization to become comparable to

those retained. Quantitatively we must have

E_f(1)/_vi
<< i (1.29)R =

l_f(°)/_vI

Backus [1960] shows that the value of R must grow proportionately

to t; hence; no matter how small the initial perturbation, the

perturbation-theoretic solution must eventually break down.

Differing estimates of the time required for breakdown of

linearization (because of the growth of the ratio R) in (1.29)

are derived by Dawson [1961], Montgomery [1964], and O'Neil

[1965]. Dawson and O'Neil compute the time required for R to

become 0 (i) in the region of resonance v = m (k)/k as

: i_ _, (_: f(1)(v,o)),
f(o_(v,o)
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subject to the restrictions that _L T << i and k not be too small.

The requirement YL T << i is essentially that the i_itial field

amplitude not change appreciably from t = 0 to t = T. Montgomery

[1964] estimates the time required for breakdown to occur in the

non-resonant part of the distribution as tM = i/k _ Vth. It has

not yet been shown how the breakdown (1.29) affects the electric

field although O'Neil [1965] has calculated the long time limit

of 7 in the case that _L _ << i.

The second way in which the linearization of Vlasov's

equation can break down is through the presence of instabilities.

If the solution of D (k, p (k)) = 0 yields values of 7 < O, then

the electric fields grow_ causing the eventual breakdown of the

perturbation series. There is at present no theory adequate to

treat strongly unstable initial conditions for the Vlasov equation.

W_at is needed_ then is numerical data to illuminate the

range of applicability of the linearized solution to the Vlasov

equation for stable cases. Also it is desired to investigate

numerically some of the strongly unstable cases in order to gain

some insight into how an analytic theory for such cases might be

formulated. Such numerical calculations have been done previously

by Knorr [1963a, 1963b] and Kellogg [1965], and are used as a
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basis for this numerical study. The present numerical results are

obtained by quite different procedures but are in qualitative

agreement with Knorr' s published data.

1.5 Summary of Predictions of Non-

Linear Theories for Stable

Initial Conditions

The first theory we consider is that of O'Neil [1965].

O'Neil observes that if the amplitude of E (I) does not change

appreciably in a time given by T = V 2/_ and if k is not too

small, then _ can be shown to be the time after which (1.27) is

not valid in the vicinity of v = w(k)/k. Quantitatively expressed,

the requirement on _ is that T _ (linear) << i.

If the requirement _T << 1 is met and k is not too small,

then O'Neil is able to show that y (asymptotic) = O. This pre-

diction is subject to test and is tested in the present work_ the

results being discussed in Chapter V. The requirement

_T << 1 is severely restrictive since it does not allow the

electric field to deviate significantly from its initial

amplitude. Many of the cases for which Knorr, as well as this

writer, observed changes in the damping decrement lie quite

outside the range of applicability of O'Neil's results, because
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the electric field has damped through orders of magnitude before

deviations from linearity are observed.

A non-linear theory of somewhat wider applicability is due

to Gary_ who makes use of the Landau solution

to compute the second order correction to the uniform part of the

distribution f(2)o (v, tA) in an asymptotic limit. The f(2)o is

used to compute a corrected solution to the Landau denominator

for the _ and y. In this paper we will compare a numerically

derived f(2)o (v, tA) with Gary' s analytic prediction

(Figure 39) using initial conditions of the form

f (x, v, 0)

-v2/2
e

5/2 
(i + _ cos k x) (1.3o)

2
In addition we will compare a numerical value of the v

moment of the f_2jfh with the theoretical =_,,±c_uo_u_'^-as -'_e_7as
o

the asymptotic values of y (numerical versus analytic) for several

different values of k and _ in initial conditions of the form

(1.3o).
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1.6 Inhomogeneous Equilibria:

The Bernstein-Greene-Kruskal

Solutions

This section outlines a special class of equilibrium solu-

tions to the Vlasov equation [Bernstein, Greene, and Kruskal,

1957]. It is easily verified by substitution into equation

i 2
(i.i) that any function, say g (_), where _ = _ mv - e _ (x),

is an equilibrium solution of the Vlasov equation. Only in the

trivial case where _ (x) = const would the _g/_x = O; otherwise

8g/Sx # 0, and there exists a non-uniform charge density in the

equilibrium. The potential, _ (x), is determined from the solution

of Poisson's equation,

i 2
= -4w N e (i - J dv g ( _ mv - e _(x)).

bx2 o
--OO

Equation (1.29) can be rewritten as

8x2

(1.32)
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which is formally equivalent to the equation describing the

position, '9', of a hypothetical particle moving in an effective

potential, 'V(_)', as a function of time, 'x' Equation (1.32)

has a first integral

2

3(1 ___x ) + V (9) = A , (1.33)

where A is some constant.

For the present work we are interested in the periodic,

_(x) = _(x+L), solutions of (1.32). Such periodic solutions

exist if V (9) has a relative minimum, or "well", and if the

total "energy", A, is less than the height of the "well" If

g (_)is not a monotonically decreasing function of energy, then

periodic solutions of (1.32) can be found.

Considerable analytical effort has been expended in the

investigation of inhomogeneous equilibria [Dawson, 1959; Montgomery,

1960; Krall and Rosenbluth, 1961; Low, 1961; Wilhelmsson, 1961;

Pearlstein, 1964]. In this paper we will present numerical

results which we believe indicate that such inhomogeneous

equilibria are approached as the asymptotic limit of a certain



19

class of strong electrostatic instabilities. These results are

presented in section 4.2 and are discussed in section 5.3 of this

paper and also in Armstrong and Montgomery [1966].

1.7 Quasi-Linear Theory

The formalism of Vedenov, Velikhov, and Sagdeev [1962]

and Drummond and Pines [1962], known as "quasi-linear" theory of

plasma oscillations, describes the development in time of weakly

unstable initial conditions. Although the numerical results

obtained in this study do not correspond to physical situations

in which the quasi-linear theory applies, we include a brief

outline of the theory for purposes of reference and then discuss

the reasons why the present results are not comparable with quasi-

linear predictions.

Bodner and Frieman [1963] give a short summary of quasi-

linear theory which we will follow closely here. The development

begins with the Fourier analyzed Vlasov equation,

8fk e 8fk'
= o (1.34)E

_t ÷ ikv fk- _ k' _k-k' _v
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We assume E = 0 and rewrite (1.34) as
O

_fk e Sfo e Z' _fk'

$-_-- + ikv fk - _ Ek _v m k' Ek-k' Sv
- 0

(1.35.)

where the prime on the sum means that the k' = 0 term is omitted.

Now for k # 0 we neglect the third term on the left hand side of

(1.35) and obtain

Sfk _f

$-_-÷ ikv fk - e om Ek _ = O, k # 0 . (1.36)

Note that f = f (v, t).
o o

For k = 0 we have

_fo (v, t) e Sfk
--= o. (1.37)

- -- _ E-k _v
St m k'

The reader is referred to Drummond and Pines [1962] for a dis-

cussion of the range of validity of the neglect of the "mode

coupling" term in (1.36). The next step in the procedure is to
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solve (1.36) for fk using a WKBapproximation for fk and Ek.

Making use of the fk in Poisson's equation yields

(_fo (v, t)
4we 2 dv _v

1 : -m- J ' (1.38)
kv- _- i _k

where _k and 7k are the customary oscillation frequency and growth

rate, respectively. Equation (1.36) can be solved in the small k

approximation to give

4we2 Sg (1.40)

and _k - 2 % mk2 av _k

The remainder of the procedure, which we will not belabor here,

involves substituting the solution for fk from (1.36) into (1.37),

making use of the expression (1.40) for Yk' observing that for a

weak instability 7k/_ k << i, and going over to the limit of

continuous k's. If one does all this, one obtains a diffusion-

like equation

_fo (v, t) 2 (v, t)
e $ [D Sfo

St = 2 Sv 8v ]; D
m

: D (v,t)

(1.41)
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for f (v, t) which leads, in the long time limit, to a flattening
0

of fo (v, t) around v = _k/k. The field in the plasma in the long

time limit has a spectrum of phase velocities peaked at _k/k.

The reasons why the numerical results in this study are

not comparable with the predictions of quasi-linear theory are:

i. We do not work in the k _ 0 limit numerically.

2. We have at most k_ 2k, 3k_ discrete k's present in

the numerical problem, not a continuous k spectrum.

3. We must of necessity treat unstable initial conditions

in the numerical problem having 7 _ 0.i in order to

reach an "asymptotic" regime in a time during which we

can accurately compute the solutions.

4. The phase velocity of the growing waves is _ thermal

velocity_ rather than the opposite situation which is

specified for the _ _'_ ÷_ .....quct_J--_L_._c_r _±_ j •
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II. STATEMENT OF THE COMPUTATIONAL PROBLEM

2.1 Reduction of Equations to

Dimensionless Form: Per-

fectly Reflecting Boundaries

It is desired to study the dynamics of an electron plasma_

using the non-linear Vlasov equation. We will numerically inte-

grate the initial value problem in order to study non-linear

effects on both stable and unstable equilibria. The equations

governing a collisionless electron plasma are:

8f e (_, v_ t)

_t
+ v

$fe (_ _' t)

_x

_v

= 0 (2.1)

and

_-- E (_, t) = 4w e N (i -

o
J fe (x, _, t) dv ),

(2.2)

where f (_ _, t) specifies the distribution function of electrons
e
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at position _, with velocity _, at time t. The plasma is

assumed to be macroscopically neutral with a "smeared-out"

immobile ion background of density N
o

Equations (2.1) and (2.2) properly describe the dynamics

of a plasma in the limit g = (No L]) -I ..9 0

K T 1/2
e

LD ( 4_ _ e= 2 ) _ Debye Length

o

2

m Vth
T _ Electron Temperature -
e K

and for time scales on the order of the reciprocal plasma fre-

(Wp e2/m)i/2). The restriction of the time scalequency = (4w No

is necessary for the assumption of immobile ions to remain valid.

We apply equations (2.1) and (2.2) to a plasma which is

assumed to be disturbed only in one dimension, and go to the

one-dimensional distribution (vx _ v):

dVy dv z fe (x, v, t) = f (x, v, t)

(_, t) = E (x, t) : Tx E (x, t) •
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Then (2.1) and (2.2) become

$f (x, v, t) ÷ v $f eE $f = 0 (2.3)
St Sx m $v

o_

BE : 4w e N (i - _ f (x, v, t) dv) (2.4)
_x o

It is convenient to introduce a set of dimensionless units

and also to use a distribution function f of unit average norm.

X = X L D

v : vvt 

t = _/_p

E = kTeE/eL D

Vth: WpL D

vt_ f (x, v, t) =

Equations (2.3) and (2.4) become

(2.5)
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dE i - J _ (x, v, t) dv • (2.6)
d_ -_

Henceforth we will drop the ~, and all quantities will be ex-

pressed in the appropriate dimensionless units.

It is also desirable to use a finite representation of the

unbounded plasma. Montgomery and Gorman [1962] show that for

small perturbations about a stable equilibrium, the dynamics of

a plasma confined by perfectly reflecting boundaries are the

same as for an unbounded plasma, provided the following conditions

are satisfied:

f (0, v, t) = f (0, -v, t)

f (L, v, t) = f (L,-v, t)

E (0, t) = E (L, t) = O, (2.7)

where x = 0 and x = L are assumed perfectly reflecting boundaries

as illustrated in Figure i. By specifying initially that

f (x, v, o) f (-x,-v,o),

-L_x<L,
m

(2.8)
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Montgomery and Gorman show that equations (2.7) are satisfied

and that no initial perturbations are excluded from such

solutions. It may also be shown that (2.7) and (2.8) imply the

relations

f (x, v, t) = f (-x, -v, t)

E (x, t) = -E (-x, t). (2.9)

Equations (2.9) have also been shown to hold in the non-linear

case as well by Gartenhaus [1963].

We now expand f (x, v, t) and E (x, t) in a Fourier series

of period 2L as

inkx
f (x, v, t) = Z e f (v, t) (2.10)

n
n=-

inkx (t) (2 .ii)E (x, t) = Z e En
n _ -

L

where fn (v, t) - 2wl ZL_ e-inkx f (x, v, t) dx (2.12)

L

-in_x (2.13)En (t) - i Z e E (x, t) dx
2w -L
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(2.14)k - 2L

Because f (x, v, t) and E (x, t) are real, we must have

fn (v, t) = f_n (v, t) (2.15)

En (t) = E_n (t) (2.16)

Substituting (2.10) and (2.11) into (2.5) and (2.6), we obtain

the following set of equations:

_fn

_-_-- ÷ ink v fn (v, t) -

q_D

_fq
En_ q $-_-- = 0 (2.17)

ink En = 6n, o- _ fn (v, t) dv (2.18)

n : 0, + i, • 2, + 3, ...

From the symmetry relations (2.9) we have

En (t) = -E_n (t) (2.19)

fn (v, t) = f-n (-v, t) (2.20)



29

We will also need the expressions for the field potential energy

and particle kinetic energy in order to verify energy conserva-

tion in the numerical calculations. In dimensionless units

W (particle kinetic)
P

L _ 2

= _ ,_ v---f (x' v' t)dv2
--L --CO

2

2L _ v t) dv= _- f0(v,

(2.21)

and

L E 2

wF (field)= ___--
(2.22)

And_ of cours%

WT0 T = W ÷ WF = const.
(2.23)

2.2 Expansion in Hermite Polynomials,
the Gram-Charlier Series

Several methods of numerically integrating the system

(2.5) and (2.6) in x,v variables were tried and found to be
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unsatisfactory due to poor conservation of charge and energy.

Also the criterion for numerical stability of the "direct" x,v

methods requires that At be very small if the velocity grid is

taken fine enough to represent the Backus-type velocity space

wrinkles. Kellogg [1965] discusses such a "direct" method. What

is desired is a representation of f (x, v, t) which could be

numerically integrated accurately for a time long enough to see

the physical effects of interest and still to retain the effect

of the Backus terms.

It was decided that for this purpose an expansion of

2
-v /2

fn (v, t) = _ e hm (v) Zmn (t) (2.24)
m--o

would be useful, where

2 e-V2/2)
h (v) : (-llm ev /2 dm ( (2.25)
m (m.'(2w)i/2)I/2 d vm

is the ortho-normal set of Hermite polynomials [Jackson, 1961].

An expansion similar to (2.24) was used by Engelmann et al.

[1963], in a theoretical calculation of non-linear effects. The

coefficients Zmn (t) can be complex, but our restrictions on
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the symmetry of f (x, v, t) will require that Zmn(t) be either

purely real or purely imaginary. The rigorous mathematical

question of the convergence of the representation (2.24) will

not be discussed here other than to say that f (v, t) must gon
-v2/2

to zero at least as fast as e for large values of v, in

order that (2.24) be valid.

Now using equations (2.15) and (2.20) we obtain

fn (v, t) = fn (-v, t) (2.26)

which implies that

or

Zmn (t) = (-i) m Z*mn (t)

Re Zmn (t) = 0 m = i, 3, 5, 7, ...

(2.27)

(_ o_

Im Zmn (t) : O, m : 0, 2, 4, ... (2.29)

Substituting the expansion (2.24) into (2.18) and (2.17), we

obtain
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and

En (t) i F_2w)I/4= nk Re Z0n (t)

nlO

_o (t) : o

Zmn (t) + ink ( _-_Zm_ 1 n + _ %+1 n )

(2.3o)

CO

+ i(27)i/4 z
k

q._-- CO

n-q Zm_ I q = 0

m = i, 2, ...; n = 0 + i, + 2, ...

Z0n (t) + ink Zln = 0

n = 0, + 1, + 2, ... (2.31)

by making use of the orthogonality properties and recursion rela-

tions for Hermite polynomials which are

_-T hm (v) = v hm (v)- (m + 1) 1/2 hm+ I (v)
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and

v hm (v) (m+l) I/2= hm+ I (v) + (m)i/2 hm_ I (v).

We have now succeeded in reducing the original differentio-

integro system (2.17) and (2.18) into a set of first order, non-

linear, coupled differential equations which are convenient for

numerical integration.

Equations (2.31) do not, unfortunately, form a closed

system in either m or n if we choose, as we must, to integrate

a finite number of such equations. Suppose one chooses to

integrate the equations for m = O, i, 2, ..., M; n = 0, i,

2, . • N. Then the expression for ZMn , n = 0, i, 2 ... N depends

on ZM÷ I n(t), n = 0, i, 2 ... which are unknown. The _÷i n

enters equations (2.31) in such a way that it may be neglected

only if

ZM+I n (t)

I ZM_I n (t) I <<l " (2.32)

It will be shown in the next section that inequality (2.32) is

valid only for t < in the free streaming problem, and in
nk
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the plasma case the numerical calculations show that the time for

(2.32) to be satisfied is also t < In order to maintain

_-_M nk

an accurate solution for t > n-7 ' we must either obtain a

good approximation to _+i n (t) or else find some other way to

simulate, as far as the numerical solution for the first few

Zmn (t)'s is concerned, the infinite set of all Zmn

a method of simulation is described in section 3.2.

(t) 's. Such

2.3 The "Free-Streaming" Problem

The equation

a__ff + v _-_f= 0,
8t _x

(2.33)

which is obtained from (i.i) by setting the electronic charge

e = O_ corresponds to a freely streaming gas of neutral

particles. This equation has a simple analytic solution in

terms of the initial values, namely

f (x,v, t) = f (x- _, v, 0). (2.34)

Although the solution of (2.33) is much simpler than for the plasma
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case (i.i), equation (2.33) exhibits all of the properties which

make the Vlasov equation difficult to treat numerically. As can

be seen from (2.34), the solutions of (2.33) contain terms

whose velocity derivatives grow proportionately to t, producing

a rippling of the distribution function in velocity space.

This fact has been observed by both Knorr [1963a] and Kellogg

[1965]. The rippling in velocity space makes the distribution

function very difficult to represent accurately on an x_ grid,

hence the "direct" methods of integrating (2.33) are limited to

times for which the finite grid spacing is less than the wave-

length of the ripples in velocity space.

The Fourier analyzed equation (2.33) is

8fn
-- + i_v f = 0 (2.35)
8t n

where all Fourier modes are decoupled. Using the expansion (2.24),

we obtain

dZmn (t) ink _mZ (t) ÷ _-_Z m
dt + (_m-1 n +l n

(t))

= o (2.36)
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for the free streaming problem.

Maxwellian,

If the initial f
n

(v, 0) is a

c e-v2/2

f+l (v, o) :
- 2@-7 

fn (v, 0) = 0 n # +_ i, (2.37)

then it may easily be verified by substitution that the solution

of (2.36) for Zmn (t) is

(ink t)m c (nkt)2/2

Zmn (t) = _ m_'. 2 e- n = + i
m = 0, i, 2, ...

_n (t) = 0 n _ +_ i • (2.38)

The solutions Zml (t) of the free streaming problem have similar

characteristics to the solutions of the plasma problem; hence we

will examine the solutions (2.38) in detail. First we notice that

th

the m coefficient attains its maximum value at a time t =

All coefficients approach zero for large t; however, the largest

coefficient in the representation of fl (v, t) occurs at larger

and larger values of m as time advances. The representation of
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fl (v, t) in the Gr_-Charlier series does remain convergent,

although more and more terms are required to represent

fl (v, t) accurately as t increases.

It is necessary, therefore, in numerically solving the

set of M + i equations (2.36) to use an estimated value of

ZM+ I l(t) in computing _ l(t) as t _ _k Since it is mainly

the m = O, i, 2 coefficients of the solutio_ of (2.36) which

are of interest, it is possible to maintain accurate solutions

for m = O, i, 2 by beginning at t = --_ to solve for one less

coefficient at each time step. Practically speaking, this allows

the m = O, i, 2 coefficients to be obtained as accurately as if

the entire infinite set of equations (2.36) were being solved.

Thus, the total time in this representation for which accurate

numerical solutions can be maintained is t = _-MM+__ (M - 2) At
k

where M and At can be chosen so that solutions can be obtained

for a period sufficiently long to see the physical effects of

interest. By "accurate solution" in this context, it is meant

that the errors in the solution are composed only of the truncation

errors in the algorithm and the round-off errors which accumulate

proportionately to the square root of the number of iterations of

the solution.
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A graphical comparison of the numerical and analytic solu-

tions of the free-streaming problem is shown in Figure 2. The

algorithm and the details of the numerical solution will be dis-

cussed fully in Chapter III.

2.4 Linear System

All of the formulae which were used in the integration of

the Vlasov equation will now be fully tabulated so that it will be

completely clear which terms have been included in each version of

the solutions presented in Chapter IV. We begin here with the

simplest, linear version, which was integrated as a test. The

linear system is obtained by keeping the following parts of (2.17)

and neglecting all the rest

_fl Sfo

St + ik v fl - E_± Sv

co

ik El - _ fl (v, t)dv
--OO

- O

_fo

_-_--: 0 (2.39)
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Equations (2.39) lead to the expressions

<l(t) + i k ( _Zm_ 1 1 + _ Zm+l 1)

'2_)_/4_ Zo %-i o : oi
+ k 1

m = O_ i_ 2_ ... M

Zm o(t ) ----0 (2.40)

for the time derivatives of the Zml (t)'s.

If we let

where {mn' _mn are both real, we obtain for the real and imaginary

parts

_l(t) - k (_--_m _m-i 1 + _ _+l 1 ) = 0 (2.42)

_(t) + k ("f--Jm%-i i + -TLTm+lq+1 l)

+ (2_)_/4_ : o (2.43)
{o i %-io
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In (2.42) and (2.43) we have made use of the fact that _m 0 : O.

In the numerical integration, equations (2.42) and (2.43) were

solved, using Gill's method as discussed in Chapter III.

2.5 Quasi-Quasi Linear System

The next degree of complication from the linear solution

to the Vlasov equation is obtained by letting only the uniform

part of the distribution function change. This procedure is not

exactly the same as that of Drummond and Pines [1962], but is

similar.

A numerical integration of the "quasi" linear Vlasov

equation was performed in order to further the understanding of

the damping process. We now include for reference the relevant

equations :

_fl (v, t) Sfo (v, t)

_t + i k v fl (v, t) - E1 (t) Sv
= 0

(2.44)

i k E1 = -_ fl (v, t) dv . (2.46)

Sfo (v, t) Sfl Sfl

_t _ E1 _v El _ = 0 (2.45)
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And in terms of the expansion coefficients Z (t), we have the
mn

same two equations, (2.42) and (2.45), as in the linear system

plus the equations

_m 0 (t) _ 0 (2.47)

_ (2_)1/4
_m 0 (t) = k (2_0 i 11m-i1) (2.48)

for the time variation of the uniform part of the distribution

function.

2.6 Second Order System

The extension to second order is accomplished by keeping

4
the terms in (2.17) which would be of order e _n a perturbation

expansion of the distribution function. The second order system

is

5f0 _v * _ *_-_Sl (fl- fl)+s2_(f2- f2) : 0 (2.49)

$fl
--+ik
5t

5fo $f2 5fl

v fl (v, t) - E1 _-+ E1 _- E2 _ : 0

(2.50)
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_f2

_t
2i k

Sfo _fl

vf2 (v,t) -E 2_- El_-: 0
(2.51)

and the corresponding Poisson equations for E1 and E2. The

equation for _f2/$t contains an 0 (4) term which has been

neglected, namely El _f3/$v, which is assumed to have a negligible

effect on the solution for El, since it can only influence the

Sfl/$t in 0 (c5). Furthermore, it will be shown numerically in

section 3.3 that dropping the 4th order term in (2.49) has a

negligible effect on the solution for fl"

In terms of the Z (t)'s, equations (2.49-2.51) become
ran

o(t) i (2W) I/4 (t) _-m(Zm_ I l(t) - Zm* I l(t))m - k _0 1

- k _0 2 (t) _(Z_l 2(t) - Z_I 2(t)) = 0

(2.52)

i 1/4
Zm 1 (t) + i k ( _m Z_l. 1 ÷ _ Z+I i ) ÷ k

1 * _ : 0 (2.53)

]

{olZm-lo- _OlZm-12 ÷ _ {02 Zm-mL]
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<2(t) + 2 i k ( _ Zm_ 1 1 TIIF i)+
i 1/4

k

: 0, (2.54)

where _nn : Re Zmn

2.7 Third Order System

The extension to third order of (2.17) consists of retain-

ing terms to order ¢5 as follows:

5fo 2 8f
E E g - O (2.55)

$t -g 5v
g=-2

Sfl 3 8f
g 0 (2.56)

8t + i k v fl - Z E_ -- =
g=-2 ±-g 5v

_f2 3 _fg

_-_-- + 2 i k v f2 - E = 0 (2.57)
g=-i E2-g $v

8f 3 3 8fg

5--_--+ 3 i k v f3 - 7' E3-g 5--_--= 0 (2.58)
g=O
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and the corresponding Poisson equations for El, E2, and E3. We

have neglected of necessity a term E_I Sf4/Sv in equation (2.58)

which is of the same order as some of the terms retained, but the

error made is presumably of 0 (5) The representation of

equations (2.55) to (2.58) in terms of Zmn (t)'s is a trivial

extension of the formulae (2.52-2.54) and will not be included

here.

2.8 Development of Initial Conditions

2.8.1 Stable Cases

For the stable cases the initial conditions were taken to

be of the form

f (x, v, O) - e-v2/2 (1 + _ cos k x) (2.59)

The values of k and c were chosen so that the damping could be

easily seen and the non-linearities could be studied using only

2 or 3 harmonics.
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2.8.2 Unstable Cases

It is well-known that certain initial distributions are

unstable and small initial electrostatic perturbations grow

instead of damp. It was shown by Penrose [1960] that a sufficient

condition for the initial distribution f (v) to be unstable to
O

growth of waves of some wavenumber k is

[fo(V)- fo(_)]

(v- _)2
--OO

where

fo(_)> o

dv > O, (2.60)

There must exist a relative minimum in f (v). If (2.60) is
o

satisfied, then there must exist at least one Pi(k) for which

D (k, Pi(k)) : 0

and

Re Pi(k) > 0

We now choose an f (v)_ subject to the requirements that
o

( ) -_2/2f v _ e v _ +
0 •

and

fo(V) -- f (-v)o



6

46

which is also unstable. Such an f (v) is
O

2/2
-V ;

f (V) = (V2 ÷ b) e

o V 2_ (l÷b)
(2.61)

which is unstable according to (2.60) if b < i. Rather than

compute the Landau dispersion relation for this f (v), the
O

stability of the distribution for various k's was checked

numerically by integrating for a few plasma periods using the

initial condition,

f (x, v, o) = _:v2, b)
V 2_ (1 -, b)

(1 + _ cos k x)_ (2.62)

and observing either growth or damping, depending upon the value

of k.

The considerations which dictated the choice of the k_ b

were as follows:

i. The growth rate should be large enough so that the

limiting amplitude could be obtained at t _ 20.

2. c was chosen small enough to allow for growth.

3. k was chosen so that only k, and not harmonics of it,

were unstable wave numbers.
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A typical parameter set which satisfies i_ 2, and 3 is k = 0.5_

= 0.01, and b = 0. The results of the numerical calculations

for several unstable cases are discussed in section 4.3.
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III. NUMERICAL ALGORITHM

3.1 Gill's Method

A specialization of the Runge-Kutta methoddue to Gill

[1951] was used to solve the set of coupled, first order, non-

linear differential equations for the set of Zmn(t ) which repre-

sent the f (x, v, t). For the time development of the Zmn , we

have a set of equations of the general form

d Zmn (t)

dt Gmn (t, Zoo(t), Zol(t ) ... ZON(t )

... ... (3.l)

m = O, i, ... M

n = O, I, ... N

(see equation 2.31).

The dependence of G on many of the Zmn'S is trivial, but the

method to be used is quite independent of the way the Zmn'S

enter the Gmn. We will write for a shorter notation,
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dZ

: (3.2)

where IZmn 1 is taken to represent the entire set of Zmn 's-

We will now quote the algorithm for Gill's method without

going into detail about its derivation.

Let Zmn(j ) represent the value of Zmn

.th
at the j time

step. The

z (o)
mn

m = O_ i_ 2_ ... M

n = O_ i_ 2, ... N

are given initially. We compute

z° = z (o)

_mn = At Grinn (t; f Zmn(O) )).

z1 : z° + 1/2
mn _ mn

(3.3)
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z2
Inn

K3
roll

z° + (-i/2+ V-_> ? + <l- V i/2)K_
mn mn m/'l

At Gmn (t + _-, )

z3 = z° - V __/2_:2 + (i + ,,/i/2) _:_
rYL.Yl_ m/l mn Inn

z4 = z° + i/6(IS-
mn rnn mn

+ 2 (l- # i/2)
m!q

+ 2 (l + "q I/2) K3,,,n+ _)

Now Z (i) = Z4 and let
mn Inn

z° = _(z) _,d_t._t,_.
..... °

The truncation error term for this algorithm is of order

(At)5 Zmn (t)
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3.2 Numerical Integration Procedure

The major difficulty encountered in the numerical integra-

tion was with the m = M boundary of the matrix in the m or velocity

space direction. As we noted in sections 2.2 and 2.3, the solutions

of the free streaming equation have the property in the Zmn(t)

representation that although a Maxwellian distribution is repre-

sented by only the ZOn coefficient, the solution must spread

out into the rest of the matrix in the m-direction as time

advances. The solution to the Vlasov equation is similar in

having the property of spreading out as time increases. At

first, various schemes were tried in an attempt to estimate the

value of the M + i coefficient in a small matrix (typically

M = 80). No such procedure was found to be satisfactory.

The spreading out of the solution is a real effect which

is due to the presence of terms in fn (v, t) which have velocity

-ikvt
dependence e It was then decided that a very large

number of coefficients were really necessary to represent

f (x, v, t) for a few tens of plasma periods. The matrix

Zmm(t) was then expanded to approximately 1200 coefficients in the

m-direction, as large a number of feasible to compute on the hard-

ware available. A series of computer programs was written in
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Fortran for use on the I.B.M. 7044 at the University of lowa

computer center• A sample of one of these programs is included

in Appendix I.

The solution of the set of equations for the Z (t) 's
r_q

was extended to times greater than the time necessary for the

coefficients at the boundary, m = M, to attain their maximum

value by simply dropping off one coefficient at each time step.

This allowed a solution for the first few coefficients which

was the same as if the entire infinite set of Zmn(t)'s was

being computed. This procedure was suggested to us by

Dr. Hubbard to whom we are indebted.

It should be emphasized here that the solutions of the non-

linear Vlasov equation presented in this paper include the

ikvt
Backus-type e terms. This is a major difference between

the present work and the work of Knorr [±963a, b]. By solving the

"free-streaming" problem for the initial conditions (2.37) using

Knorr's continuous Fourier transformation in velocity, it can be

seen that the maxima of the transformed representation of

f (x, v, t) eventually migrate out of the finite range of the

velocity transform variable• Knorr asserts that by the time the

ikvt
e produced terms move out of the range of the transform
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variable that their effect on the moments of f (x, v, t) is

negligible. The results of the present study seem to agree with

Knorr's assertion. Nonetheless it has proved to be possible to

compute the solutions to the non-linear Vlasov equation including

ikvt
the effects of these e terms.

The choice of the number of the Fourier wave numbers to

keep is determined by the requirement that if N harmonics are

retained, then keeping N + i harmonics should not change the

n = O, i solutions appreciably. This procedure was followed in

the numerical calculations and is described in section 3.3.

3.3 Checks of the Accuracy of

the Numerical Results

In order to interpret physically the results of the

numerical integration of the Vlasov initial value problem it is

necessary to know how accurately the numerical solution traces

out the true solution. The true solution to the non-linear

Vlasov equation is not analytically obtainable which is, of course,

the reason for attempting this numerical solution. It is

possible, however, to learn a considerable amount about the

accuracy of the numerical solution by numerically integrating

problems which are similar to the non-linear Vlasov equation but

for which the analytic solutions are known.
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One problem similar to the Vlasov problem is that of a

freely streaming gas as discussed in section 2.3. The explicit

solution is just

f (x, v_ t) = f (x- vt, v, O)

in terms of the initial distribution function

2/2
-V /

e
f (x, v, o) :

e-V2/2
f (x, v, t) -

_/ 27

(i + e cos k x)

(i + e cos k (x - vt)).

For this particular initial condition the analytic solution is

given by equation (2.38). A graphical comparison of the

numerical solution for At = 0.01 and the analytic solution is

shown in Figure 2. The most important errors are apparently due

to the 8 digit arithmetic of the 7044 and not the truncation

error of Gill's algorithm which_ in this cas% would be of order

i0 -I0 i0 -I0x ___(t) (at worst x Z (t)). It is clear from
Hhrl- mn

Figure i that the solutions agree well for more than 7 orders of

magnitude. In Table i we have tabulated the results of another
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run of the free-streaming case with a At = 0.025 for comparison.

Fortunately in the plasma case for intermediate values of k,

the solutions Z (t) do not fall so rapidly and can be followed
mn

accurately for a longer time than the streaming solutions. For

values of k larger than 1.0, it would clearly be necessary even

in the plasma case to use more digits of accuracy than 8 in

order to observe the solutions even for a few tens of plasma

periods.

A second initial value problem which was run as a test of

the accuracy of the integration scheme was the purely linear

system as described in section 2.4. In this system one expects

a strictly exponentially damped electric field to appear after the

effects of the initial value terms become negligible. As can be

seen in Figure 3_ the linear system does damp exponentially.

This exponential damping persists through the times when the non-

linear cases will later be seen to deviate from strict exponential

damping, which indicates that the variations in damping rate in

the non-linear cases are due to the presence of non-linear terms

rather than failure of the numerical solution to represent the

true solution.
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Another check of the accuracy of the numerical program is

accomplished by numerically integrating the same initial condi-

tions using different values of the time increment At. The

values of the coefficient Zol(t) in the solution of k = 0.5,

e = 0.i initial conditions are given in Table 2. At t = 25

for exampl_ the effect of changing At from 0.O125 to 0.025 was

to change the value of ZOI by 0.O032_.

Still another estimate of the reliability of the solutions

may be extracted from the constancy of the total energy for the

plasma slab under numerical integration. Table 3 gives such an

estimate. The change of total energy in this case (_ = 0.i,

k = 0.5) was about O.01_ of the initial energy in the electric

field.

A further test of the sensitivity of the solutions to the

presence of high order berm_ in .... _±_ _ _ ..........

by running the second order system with and without the term

E2 _/$v (f2 - f2 ) in the expression for $fo/St (v_ t). The

results are shown in Table 4 from which it may be seen that, for

example, at t : 35 the value of Zo1 was changed less than i_o by

the omission of the 4th order term.
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After considering the numerical accuracy of the integra-

tion of a given second or third order system there is the question

of how well the Fourier harmonics retained represent the entire

solution to the non-linear Vlasov equation. Since we are particularly

interested in the validity of the results for the n = i Fourier

mode, we will check the effect of neglecting high order harmonics

on the value of ZOI. Table 5 displays a comparison of the values

obtained for ZOI , and Z02 in a second and third order system.

The deviation at t = 15 for ZOI was 0.86_. The Zo2'S

have different values in the table because the phase of ZO2 is

slightly changed by going to the third order. Nevertheless,

!

the agreement of the ZOI s indicates that the second order

system is satisfactory in this case (c = 0.25) and presumably

for all smaller values of c. The fact that the second and the

third order solutions are in close agreeme_t ±__ _+_ +_

Fourier expansion is rapidly convergent.
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IV. SUMMARY OF NUMERICAL RESULTS

This chapter is intended to be an objective summary of

the numerical results obtained by integrating the initial value

problem for various initial conditions. Comments on the solutions

will be made only as they are necessary to the proper u_derstand-

ing of the data presented. Chapter V contains our assessment of

the significance of the data. Because we realize that there may

be other interpretations given to the data, we attempt to present

the numerical data in a form separated from our interpretation of

it.

4.1 Summary of Results : Stable

Initial Conditions

In all of the cases to be described in this section the

form of the initial conditions is the sam% namely

e-V2/2

f (x,v, o) = (i + c cos k x) (4.1)

When expressed in terms of the expansion coefficients Zmn ,

the initial conditions (4.1) become
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_ l (4 2)
ZooCo) (2_)1/_

and

1 (4.3)
Zo 1(°) - 2 (2_)i/4

where all of the remaining

Zmn(O) : 0 m : O, i, ... M

n : o, +_2_+_3,... +_N.

The numerical solution consists of using a set of dynamical

for the Zmn(t) as described in sections 2.2 to 2.7 toequations

advance the initial conditions (4.2) and (4.3) using Gill's

algorithm (section 3.1) as the finite difference scheme. The

quantities of primary interest in the numerical solution are the

Fourier components of the electric field, which are related to

the Z 's by
mn

En(t ) i (2w) I/4- nk Zon (t) (4.4)
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In the presentation of the numerical data, the Zon(t ) will be

used, since the ZOn(t ) is the number actually computed in the

solution and E (t) is easily derived from it. We will now discuss
n

briefly each case which was computed, as listed in Table 6,

beginning with the k = 0.5 cases in order of increasing epsilon,

i.e., increasing non-linearity. Following the k = 0.5 cases we

discuss several k = 1.0, 0.375, and 0.35 cases which were run in

order to verify that the results for k = 0.5 were not peculiar.

An additional reason for the choice of initial conditions

of the form given in (4.1) is that it is one of the very few for

which numerical integration of Vlasov's equation has been

attempted [Knorr, 1963a, b]. Agreement between the results from

two very different integration schemes would both increase

confidence in Knorr's results and in the new situations to be

reported later in this work.

Beginning with Case I (k = 0.5, c = 0.025), we observe in

Figure 4 that Zol(t ) has the form of an exponentially damped

plasma oscillation until t = 30 when the effective damping

decrement begins to decrease. The effective damping decrement

for the fundamental wavenumber has been computed from the ratio

of adjacent electric field maxima and plotted for Case I in

Figure 5.
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The damping decrement curve has the characteristic form

of following the linear value for sometime, in this case until

t _ 30, and then falling below the linear value. There is a

slight "leveling-off" of the dampingdecrement curve at about

t = 50 to 55. The last several points on this curve are uncertain

to perhaps i0_; hence conclusions regarding an asymptotic value

of 7 for this case are uncertain.

Figure 6 showsthe results of numerically integrating

CaseII (k = 0.5, c = 0.04) which is similar to, but not

identical with, Knorr's CaseIII (k = 0.5, _ = 0.05). The

present numerical results agree well with those of Knorr.

The behavior of ZOI in Case II follows the linear prediction

until t = 26 whenthe dampingdecrement falls below the linear

value. At t _ 42 the dampingdecrement curve "levels-off" at

= .08, as can be seen in Figure 7.

In order to illuminate the cause of the changes in the

damping decrement and to showgraphically the effect of Landau

damping on the spatially uniform part of the distribution

function, we reconstructed fo (v, t) by summingall of the

significant terms in the series representation:
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M e_V2/2
f (v, t) : Z hm(V) Zmo(t) (4.5)
O m=O

This summation was performed for 500 velocity points at several

different times for Cases II, III, IV, and V, in order that the

effect, on f (v, t), increasingly non-linear initial conditions
o

would be evident. Another function, f(2) (v, t), defined by
o

f_2) (v, t) = fo (v, t) - f (v, 0),
o

was computed in order to show the fine detail of the corrections

to the uniform part of the distribution produced by the non-linear

terms. As a point of reference in all the f (v, t) and
0

f(2) (v, t) curves (cf. Figures 8a, b; 9a, b; 12a, b; 13a, b;
O

14a, b; 17a, b; 18a, b; 19 a, b) which are displayed, the linear

phase velocity v = mL/k is indicated on the velocity axis. The

non-linear corrections to mL will, in some cases, significantly

change the phase velocity; however, for purposes of reference, the

linear phase velocity seems adequate.

Figures 8a and 8b show the f(2) (v, 20) and f (v, 20),
O o

respectively, for Case II. It can be seen that for this case

the function f(2) (v, 20) has a sharp decrease slightly below
O
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: _/k and a sharp increase slightly above v = WL/k. Inv

addition f(2) (v, 20) has velocity space ripples which are clearly
o

seen for v < mL/k. The period of the ripples in velocity is very

-ikvt
close to 2_/kt, the value one expects from e The effect of

f(2) (v, 20) on the entire distribution function f (v, 20) is to
o O

cause a slight flattening, or decrease of Sfo (v, 20)/_v, in the

neighborhood of v = WL/k-
i

Figures 9a and 9b show the f(2) (v, 35) and f (v, }5)
O o

-ikvt
for Case II. Again the e wrinkles are present but smaller in

amplitude. The negative and positive peaks in the neighborhood

of v = WL/k are larger and sharper at t = 35 than at t = 20.

The entire distribution function is flattened even more around

v = _L/k for t = 35 than for t = 20.

Figure i0 shows the next situation which was integrated_

Case II (k = 0.5, e = 0.i). This case has exactly the same

initial conditions as Knorr's Case IV, shown in his Figure 3d

[Knorr, 1963b]. The results of Knorr's Case IV and our

Case III agree to the precision with which they may be compared,

using numbers extracted from Knorr's published graph. There is

one exception, however, in that we do not see the regrowth and

subsequent peaking of the second harmonic around t = 45 which
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Knorr does. The plot of _ versus time (Figure ii) shows that the

damping decrement deviates from the linear rate beyond t = 7.5.

After t = 7.5 the damping rate is larger than the linear rate

until t = 17.5 when the decrement decreases and then reaches a

"plateau" of _ = 0.048 at t _ 26. Figures 12a and 12b show the

f(2) (v, i0) and f (v, I0) for Case III. The velocity wrinkles
o o

are comparatively large and the "notch" around mL/k is not yet

well developed. Some flattening of f (v, lO) is evident in
o

Figure 12b At t = 20, as shown in Figure 13b, f (v, 20)• O

appears more flattened around_L/k. Figure 13a shows that the

ripples in f(2) (v, 20) of period 2_/kt are smaller in amplitude
o

for t = 20 than for t = i0. Finally, at t = 30 (Figures 14a

and i4b) the derivative of fo (v, 30) has gone almost to zero

around _L/k and the amplitude of the "notch" in f(2)o (v, 30)

-ikvt

around WL/k is still increasing. The e terms are still

present at t = 30 but have smaller amplitude than at t = 20.

Another point to observe about f (v, t) is that the region
o

slightly above v = WL/k has been enhanced, not only from the

region slightly below v = _/k but also for all v < wL/k.

The next case we consider is Case IV (k = 0.5, _ = 0.25),

as shown in Figure 15. Many of the characteristics of this case



65

are similar to CaseIII and are evident in the figures, and only

the peculiar features will be discussed. The most obvious way

in which the _ = 0.25 case is different from the c = @.i case is

that for c = 0.25 the second harmonic starts growing whenthe

damping in the first harmonic has ceased at about t = 15. The 7

versus t plot (Figure 16) for this case showsthat the 7 never

attains the linear value and even fluctuates negative and

positive beyond t = 25. A very interesting effect in Case IV

is seen in f (v, t) shownin Figures 17a, b; 18a, b; ando

19a, b. At t = 5, f (v, 5) is merely enhancedat large
o

velocities, but by t = i0, f (v, i0) has become very flattened
o

in the neighborhood of _/k. At t = 15, however, the f (v, 15)
o

has developed a peak at v = 3 and is no longer monotonically

decreasing, which allows the possibility of unstable roots to

the Landau denominator for this distribution. The growth of

E2 after t = 15 may be due to such an unstable root.

In order to check the validity of the second order solution

for k = 0.5, c = 0.25, these same initial conditions were run in a

third order system (Case V) shown in Figure 20. The behavior of

the first two harmonics is almost the same in the third order

system as in the second order system. The value of ZOI, for

example, was changed about 2_ at t = 17 (a maximum).
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In Figures 21 and 22 we show the results obtained for a

very large amplitude case (Case VI, k = -5, _ = 0.4). It is

clear in this case that the damping is not simply exponential

as may be judged from the y vst graph. Damping ceases quite

soon (t < i0), and regrowth of E2 (t) starts at t _ i0. This

case is clearly dominated by the initial conditions.

In order to check that the form of the results obtained in

the preceding cases was not peculiar to the value k = 0.5, we ran

cases for several other values of k, namely k = 1.0, 0.375, and

0.35. The first of these, Case VII (k = 1.0, _ = .i), is shown in

Figure 23. The electric field in this case is exponentially

damped in accordance with the linear theory for as long as we

can follow it. Case VIII (k = 1.0, E = U.2) deviates from the

linear result for t _ 5 to i0, as shown in Figure 24. The

amplitude of E1 falls below the linear v_1_ and damps to too

small a value too soon to determine an asymptotic rate of damping.

The curve of 7 vst for Case VIII is included for reference in

Figure 25.

Case IX is shown in Figure 26. This case is identical

to Knorr's Case VI, i.e., k = 0._75, E = 0.05. During the time

we followed the solution, there was no deviation from the linear
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prediction. For k = 0.35, c = 0.175, Case X, however, we observed

a marked decrease in the damping decrement at t = 12. The

coefficients ZOl, Z02 for Case X are plotted in Figure 27, and the

7 versus t curve is given in Figure 28.

Upon examination of the preceding non-linear cases which

were ru_ it became evident that the changes in damping rate were

associated with changes in the uniform part, f (v, t), of the
o

distribution function. As a further test of this hypothesis_ a

case herein called "quasi" was run. The "quasi" system is

described in section 2.5. Figure 29 shows the result of calcula-

tions on the "quasi" system for k = 0.5, _ = .O1. The amplitude

of the first harmonic in "quasi" follows closely that in the full

second order calculation until t _ 25 where "quasi" is slightly

above "second". The change in the damping decrement is still

present in the "quasi" system as evidenced in Figure 30 where

versus t is plotted for "quasi" In order to facilitate

comparison of the results of "quasi" with the results of linear

and second order systems, Figure 31 is included to show the

ZOI (t) for the initial conditions k = 0.5, c = o.i in each of

the systems.
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As a final summary graph on the results of integrating

stable cases, Figure 32 is included. Figure 32 shows the envelope

of ZOI (t) for k = 0.5, e = 0.04, 0.i, 0.25, thereby illustrating

in a convenient form the effect on E1 (t) of the non-linearity

introduced by increasing _ while keeping k constant.

4.2 Numerical Results for Unstable

Initial Conditions

Several sets of strongly unstable initial conditions of the

form given in (2.62) were integrated in order to determine, if

possible, the asymptotic form of the solutions for the electric

fields. The major difficulty encountered in numerically

integrating the unstable cases was in finding initial conditions

for which the growth rate was large enough to produce a limiting

amplitude in 20 to 30 plasma periods, and also for which the first

two Fourier harmonics represent the solution accurately. It was

desired that the fundamental k be unstable but that the 2k wave_

number in the solution not be unstable; therefore, several pre-

liminary runs were made to find suitable initial conditions to

use.

The first unstable case which was computed, Case XII, was

for b = O, k = 0.5, e = 0.O1. The results for Case XII are shown
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in Figure 33. After t = 5 the solutions for E1 and E2 were

observed to grow exponentially with growth rates of

71 = -0.245 and 72 = 2_i. The growth of the 2k wave was

interpreted to be simply the feeding of energy from the k wave

into the 2k wave through the E1 $fl/SV term_ because a perturba-

tion with wave number 2k only was found in a preliminary test to

exhibit no growth for these initial conditions. The growth of E1

ceased at t = 24, after which E1 underwent a long period fluctua-

tion in magnitude (but not sign) until the integration was

stopped at t = 60. E2, on the other hand, stopped growing at

around t = 21 and then underwent several changes of sign between

t = 21 and t = 60. The second harmonic was always smaller in

magnitude than the first by at least a factor of 2 and usually more.

Note here that the solutions ZOI and Z02 must be multiplied by

i (2 )1/4 i
k and 2k

respectively, to correspond to E 1 and E2.

The f(2) (v, t) and f (v, t) for Case XII are shown in
O o

Figures 34a and 34b for t = i0; Figures 35a and 35b for t = 20; and

Figures 36a and 36b for t = 30. The most obvious effect to be seen

in Figures 34-36 is the filling in of the "hole" near the minimum

(v = O) of f (v, t) as time advances.
o
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A third order calculation, Case XIII, was performed on the

same set (k° = 0.5, c = 0.O1, b = O) of initial conditions in

order to determine how well the second order system represented

the full solution to the non-linear Vlasov equation in this

case. As can be seen by comparing Figures 33 and 37, the solutions

for the first and second harmonic are substantially the same in

the second and third order versions of the unstable (k = 0.5,

= 0.01, b = O) case. The initial growth rate of E3 is

= 371 and E3 ceased growing at t = 18.

A run was attempted using the initial conditions b = O,

k = 0.4, _ = O.O1. The growth rate 7 was nearly equal to that

for k = 0.5; however, the second harmonic soon grew to a value as

large as the first, and this case was abandoned.

Figure 38 shows still another unstable case which was

..... _-_ _ _n_d b = Ouu_@_, .... i_. n_ XIV e_ k = 0 6, _ _ 0!,

The numerical results for Case XIV are very similar to Case XIII

except that the growth rate (71=-0.237) was slightly smaller

in Case XIV and the E2 did not increase to as large an amplitude.

The property of the E1 approaching a quasi-static value does not

seem to be strongly dependent upon the choice of k in the initial

conditions.
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V. INTERPRETATIONOFNUMERICALRESULTS:
COMPARISONWITHNON-LINEARTHEORIES

5.1 Stable Initial Conditions:

Time Dependence of Damping

At the outset of this discussion, it should be emphasized

that the numerical results obtained in this study pertaining to

the time development of the non-linear first order damping decrement

are in substantial agreement with the results obtained by Knorr

[i963 a, b]. It has been possible in this study to extend these

results and to investigate in detail the nature of the changes in

the spatially averaged distribution function f (v, t) which are
o

associated with deviations from exponential damping. Furthermore,

we have obtained numerical results which illuminate the range of

applicability of recently developed theories of non-linear damping.

The first non-linear ÷_c_j........._ c_°_a__ ......._that nf O'Nei]

[1965] as outlined in section 1.4. We find that Case X (k = 0.35,

= 0.175) for which YL = 0.035 and _ = _= 3.4, satisfies

O'Neil's criterion (YL _ _ i) for the applicability of his results.

O'Neil's prediction is YN _ 0 for t _ T. It may be seen from

Figure 28 for Case X that YN does go to zero at about t = 15 in

apparent agreement with 0'Nell's theory. Another more general
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result which bears upon the Dawson[1961]--O'Neil [1965] premise

that breakdown of linearization first occurs in the region around

v = w/k is the observation that the non-linear corrections to

fo (v) are in all cases largest in the neighborhood of w/k.

The amountby which f (v, t) is changeddepends on the initial
o

electric field amplitude c/k. The O rNeil result that 7N _ 0

in the long time limit seems to be valid in the restricted case

to which it may properly be applied. However, the initial condi-

tions to which the O'Neil theory applies are highly specialized;

k must be neither too small nor too large for O'Neil's time T

(given, in our dimensionless units, by IF 2/c) to satisfy

_T<< i and simultaneously to be the time at which I_fl/$V I

first becomes m I Sfo/$V I " For most of the cases computed,

: Y 2/c was considerably shorter than the time at which large

departures from the linear damping rate were observed, _ud the

electric field characteristically fell through more than an order

of magnitude before the damping stopped.

The next non-linear theory we consider is that of Gary

[1966], also outlined in section 1.5. For the Gary theory, the

predictions which we can test numerically are:
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l°

.

Asymptotic value of the non-linear damping decrement

7N, with particular emphasis on the c < 0.i cases.

The second order correction f(2) (v, t) to the uniform
o

part of the distribution.

Gary's results apply in the regime t > t A where tA

is determined from the consideration that terms multiplied by

e-TLtA must be negligible compared to all other terms in the

problem; hence 7L tA >> i. For purposes of comparison, the

numerical solutions were assumed to be in Gary's

asymptotic, t > tA_ regime when the damping decrement had

attained a fairly constant value and when the v2-moment of

f(2) was approximately constant. There is some uncertainty in
O

the numerically obtained values for the asymptotic non-linear

damping decrement, because the numerical solutions could be

obtained only for a limited time. For all the cases to be quoted_

the numerical 7N is estimated, using the trend of the 7N vs t

curves. We present in Table 7 a comparison of our numerical

versus Gary's predicted values of two quantities,
co oo

7N (asymptotic) and _ v 2 f(2)o (v, t) dv. The y f(2)o (v, tA)
--OO --CO

2
V

_ dv is, in the numerical case, nearly equal to the initial field
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energy in the perturbation. The initial field energy appears in

the asymptotic regime as the increase in particle kinetic energy.

A further point on which Gary's theory may be

compared with the numerical data which is in the detailed shape

in velocity space of f(2)o (v, tA) • Gary computes an

f(2)
(v, tA)_ for k -- 0.5, e = O.i which may be compared witho

Figures 12a, 13a, and 14a from this paper. By considering the

development of f(2) (v, t) in time from the numerical data, it
o

may be concluded that its asymptotic form will be quite near the

form predicted by Gary and Gorman. A graphical comparison of

f(2)o (v, 20) from Case III and f(2)o (v, tA,_ for k : 0.5, e : 0.i

from Gary and Gorman [1966], as shown in Figure 39, illustrates

the agreement of the theoretical and numerical results.

5.2 Stable Initial Conditions: Regrowth
of the Second Harmonic

It is observed that, if the initial electric field amplitude

is large enough, as in Case V, k = 0.5, c = 0.25, the uniform part

of the distribution function, f (v, t), develops a region of
o

positive derivative near e/k, as can be seen in Figure 24. It

is also noted that when the 'bump" appeared at about t = 15 the

damping of E1 ceased and E2 began to grow. However, when the
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f (v, 15) from Case V was used as an initial distribution for
o

k = 1.0, c = 0.01, the k wave did not grow but began damping

away. Hence, the cause of the growth of E2 in Case V was not

that the f (v, 15) became unstable to perturbations of wave
o

number 2k; the presence of the lower order wave is apparently

required to produce the growth of E2.

A similar regrowth of the second harmonic may be seen in

Knorr's Figure 13e [Knorr, 1963a] for k = 0.5, c = 0.5 initial

conditions• Knorr does not derive the distribution function in

velocity space; hence no conclusion about f (v, t) may be made
o

for his case.

5.3 Unstable Initial Conditions:

Tendency Towards an Inhomogeneous

Equilibrium

A tentative interpretation of the numerical results obtained

for the unstable initial conditions in Cases XII and XIV will now

be offered. It was observed that the growing electric field

reached a limiting amplitude; and after that, as long as the

solution could be followed, the E1 component of the electric field

did not change sign but underwent slow variations of about a

factor of 3 in amplitude. The second harmonic in Case XII did

oscillate through zero after attaining its limiting amplitude,
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but its variations were also very slow. The net electric field

did not change sign after attaining the limiting amplitude. There

seems to be no tendency for the electric fields to damp away.

Rather, the indication is that the total electric field in

Cases XII and XIV is settling down to a static value. If this

conclusion is correct and if the numerical solutions are as

accurate as they are believed to be then these results may be

taken to indicate that the eventual development of a strongly

unstable plasma (with an initial f (v) = f (-v)) is a spatially
o o

inhomogeneous equilibrium of the Bernstein-Greene-Kruskal [1957]

type. This conclusion must be subjected to a much more exhaustive

numerical test. The task of demonstrating analytically the

correctness or incorrectness of such a conjecture is indeed

formidable.

The solutions obtained in this paper for strongly unstable

initial conditions are qualitatively similar to Knorr's Cases VII

and VIII, although the initial conditions are quite different.

Knorr's Cases VII and VIII also seem to approach a quasi-static

equilibrium which is not field free; however, Knorr does not inter-

pret his results as approaching inhomogeneous equilibria.
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It is also interesting that arguments for the approach,

as t _ _, to one of the spatially non-uniform equilibria can be

given on the basis of the quasi-linear theory [Vedenov et al.,

1962; Drummond and Pines, 1962]. However, the present strongly

unstable equilibrium for which the growing modes have

_/k << Vth , is not one to which the quasi-linear theory would

be expected to apply. The reason for the apparent correctness

of the result is not known.
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APPENDIX

THIS IS A TYPICAL PROGRAM WRITIEN IN FORIRAN FOuR
TO COMPUTE THE SOLUTION OF THE NON-LINEAR VLASOV EQUATION.

$IBFTC HRMITE
C THIS IS A PROGRAM WHICH CALCULAIE_ IHE tIME DEvELOPMENI OF IHE

C COFFICIENTS Z(M.N) IN THE REPRESENTAIION OF IHE ELECIRON

C DISTRIBUTION FUNCTION.
C THE SECOND ORDER VLASOV-HERMITE 5Y31EM I_ U_ED i0 OBTAIN JHE

C DYNAMICAL EQUATIONS FOR THE Z(M,N).

C GILLoS METHOD IS USED FOR THE NUMERICAL INIEGRAIION.
C THE Z(MtN) ARE REPRESENTED BY A DOUBLY _UB3CRIPIED VARIABLE

C AA(ItJ).

C I IS THE FOURIER INDEx, I = 1 la |HE N=u FOURIER MODE.
C J IS THE HERMITE INDEX, J = I I_ IHE M = u COEFFICIENT.
C RESERVE STORAGE AREA FOR VARIABLE_.

DIMENSION AA(3,1201)tAKAP(3,1201,4),ROOIbt12U1),DELROI(12UI)
C AKAP IS DELTAT TIMES THE DERIVATIVE OF IHE AA WIIH REbPECI I0 TIME.

C AA IS THE FOURIER-HERMITE COEFFICIENT.

C ROOTS(J)=SQUARE ROOT OF J-1.

C DELROT(J)=(FOURTH ROOTS OF 2 Pl TIMES ROOTS(J) DIVIDED BY K)

C TIMES (-DELTAT)
C VARIABLE TYPE SPECIFICATIONS

REAL KQ
LOGICAL L1

C CALL A SUBROUTINE WHICH ALLOWS FOR UNDERFLOW5.

CALL TRAPS(lOt-I)
C SET UP THE PARAMETERS OF THE PROBLEM.

KO=O.5

EPSLON=O,I
DELTAT=O.025

C SPECIFY THE NUMBER OF FOURIER HARMONIC_o

NF=3
C SPECIFY MAXIMUM HERMITE INDEX.

NH=1199

NHL=NH-I

DELTKO=DELTAT*KO

DELTK2=2.0*DELTKO

POK=((2.0*3.14159265)**O.25)/KO
DELPOK=-DELTAT*POK
R4P02=O.5*((2.0*3.14159265)**0.25)
RECIPK=(SQRT(2.0*3.14159265)I/(KO*KO)

TWOCON=SQRT(2.0)

LI=.TRUE.
C WRITE OUT PARAMETERS

WRITE(6,8999)
WRITE(6t9OOO)NF,NH,DELTATtKOtEPSLON

DO99J=l,NH
Z'FLOAT(J)

98 ROOTS(J)=SORT(Z)
DELROT(J)=ROOTS(J)*DELPOK

99 CONTINUE

C SET UP INITIAL VALUES FOR AA(I,J).

DO 101 I=I,NF

DO 101J=ItNH
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101 AA(ItJ)=0,O

AA(1t1)=1,0/((2.0_3,14159265)t_0,25)'
AA(2tl)=(EPSLON_AA(I_I)/2,0)

C INITIALIZE TIME
TIME=O,O

C WRITE OUT INITIAL CONDITIONS

WRITE(6_9OO2)TIME
WRITE(6t900I)((AA(I,J)_I=I_NF),J=I95)

C SPECIFY DESIRED NUMBER OF ITERATIONS,

ITIME=1800

C INITIALIZE VARIABLES WHICH SPECIFY TIME AND THE INTERVALS FOR
C WRITING OUT THE RESULTS,

MCOUNT=O
ICOUNT=O

C INITIAL NUMBER OF HERMITE COEFFICIENTS

NH=49

C MAXIMUM NUMBER OF HERMITE COEFFICIENI_,
NG=1185

C TIME TO BEGIN DECREASING THE MATRIX SIXE IN THE HERMITE DIRECTION,
DOWN=(ROOTS(NG-IO)/(2,0*KO))

C ENTER FIRST DO LOOP FOR ITERATION IN TIME,

DQ 7050 MT=I_ITIME
C DURING THE INITIAL 142 ITERATIONS WE INCREASE THE MAIRIX 51LE IN IHE
C HERMITE DIRECTION,

IF(MT,LE,142)

1GO TO 558 .
GO TO 559

558 NH=NH+8
NHL=NH-1

559 CONTINUE
C INCREMENT VARIABLES FOR SPECIFYING INTERVALS FOR WRITING OUT RESULTS.

LI=,NOT,L1
MCOUNT=MCOUNT+I

ICOUNT=ICOUNT+I

TIME=TIME+DELTAT

C ENTER DO LOOP FOR THE FOUR _IEPb OF GILLt_ ME]HOD,
DO 7000-1G=It4

C EVALUATE ALL DERIVATIVES FOR I=1_ UNIFORM PARI.
DOTOgOJ=3_NHt2

7090 AKAP(I_JtIG)=DELROT(J-1)_(2,O_AAt2_I)_AA(2_J-1)+AA(3tl|eAA(3tJ-1)|
C EVALUATE DERIVATIVES FOR I=2) FIRST HARMONIC.
8002 AKAP(2_I_IG)= DELTKO*AA(2t2)

DOBOO3J=2tNHLt2
8003 AKAP(2_J_IG)=-DELTKO_(AA(29J-1)_ROOIS(J-1)+ROOI_(J)_AAL29J+l))

l÷DELROT(J-1)_(AA(291)_AA(ltJ-1)+AA(3tl)_AA(2_J-1)eO,5
2-AA(2tl)_AA(3tJ-1))

DO 8009J=3tNHLt2

8009 AKAP(2tJ_IG)= DELTKO*(AA(2_J-1)tROOIo¢J-1)+AA(2_J+])_ROOI_tJ))
l+DELROT(J-1)_(AA(3_l)_AA(29J-1)tO,5+AA(2_l)_AA(3_J-1))

AKAP(2_NH_IG)= DELTKO_AA(2_NHL)_ROOI_¢NHL)
]+DELROT(NHL)_(AA(3_])_AA(2_NHL)_O,5+AA(2_I)_AA(3_NHL))

IF(TIME,GE,(DOWN÷DELTAT)) GO TO 70
IF(ABS(AA(2_NH)),LE,I,OE-IO)

1 GO TO 699]
X=ALOGiABSiAA(2_NHL-_)))



-, 80
a

Y=ALOG(ABS(AA(2,NHL-2)))

Z=ALOGIABS(AA(29NHL)))
R=2,5*Z-2,0*Y+Oo5_X

S=EXP(R)
Q=SIGN(Sg-AA(2tNHL))
AKAP(2tNMtIG)=AKAP(2tNHtIG)+DELTKO_Q_ROOTS(NH)
GO TO 6991

70 AKAP(2tNHgIG)=AKAP(29NHtIG) +DELIKO_AAI2'NH+I)_ROOI_(NH)
6991 CONTINUE

C EVALUATE DERIVATIVES FOR I=3, SECOND HARMONIC,

AKAP(3,1,1G)= DELTK2*AA(3t2)
DO 8020J=2,NHLt2

8020 AKAP(39JgIG)=-DELTK2*(AA(3tJ-1)*ROOTS(J-1)+AA(3_J+l)*ROOTS(J))
I+DELROT(J-1)_(AA(3,1)_AA(1,J-1)_O.5+AA_2,1)_AAL2,J-1))

DO 8021J=3tNHL,2
8021AKAP(3,J,IG)= DELTK2_(AA(39J-1)_ROO|3¢J-1)+AAI3,J+1_tROOI_tJ)) '

1-DELROT(J-1)_AA(2,1)*AA(2tJ-1)
AKAP(39NHgIG) = DELTK2tAA{39NHL)_ROOm_tNHL)

I-DELROT(NHL)*AA(2,1)*AA(2,NHL)
IFITIME,GE,(DOWN+DELTAT)) GO TO 80

IF(ABS(AA(3,NH)),LE,],OE-IO)

I GO TO 6992
X=ALOG(ABS(AA(3,NHL-4)))

Y=ALOG(ABS(AA(3,NHL-2)))

Z=ALOG(ABS(AA(3,NHL)))
R=2,5*Z-2.O*Y+O.5*X
S=EXP(R)
Q=SIGN(St-AA(3tNHL))
AKAP(3tNHtIG)=AKAP(3,NHtIG)+DELTK2_QtROOTS(NH)
GO TO 6992

80 AKAP(3_NHgIG)=AKAP(3,NHgIG)+DELTK2_AA(3tNH+I)_ROOTS(NH)
6992 CONTINUE

C NOW ADVANCE THE SOLUTIONS USING GILLIS FORMULAE,

GO TO (7001,7002,7003,7004),IG

7001 CONTINUE

DOTO221=IgNF

DOTO22J=l,NH
7022 AA(I,JI=AA(ItJ)+0,5*AKAP(I,J,IG)

GO TO 7000

7002 CONTINUE
DO7032I=ltNF
DO7032J=lgNH

7032 AA(ItJ)=AA(ItJ)-,29289322_(AKAP(19J_1)-AKAP(ItJ_2))

GO TO 7000
7003 CONTINUE

DOTO42I=l_NF
DO7042J=ltNH

7042 AA(I_J)=AA(ItJ)-,20710682_AKAP(ItJ_1)-AKAPiI_Jt2)

l+l,7071068_AKAP(I,J,3)
GO TO 7000

7004 CONTINUE
DO7062I=1tNF
DO7062J=ltNH

7062 AA(IgJ)=AA(IgJ)+O.]6666667_(AKAP(I_J_l)+AKAP(I_J_4))
1+0.8047378_ _AKAP(I_J,2)
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2-1.1380712_AKAP(ItJ,3)

7000 CONTINUE

C CHECK TIME AND DECIDE WHETHER TO REDUCE THE MATRIX SIZE.

IF(TIME,GE.DOWN)

1GO TO 555

GO TO 556
555 IF(L1) NH=NH-2

NHL=NH-I

WRITE(6,9011) NH

556 CONTINUE
C CHECK VARIABLE AND DECIDE WHETHER TO WRITE OUT RESULTS.

IF(ICOUNT,NE.4) GO TO 7050

C RESET VARIABLE.

ICOUNT=O
C COMPUTE ELECTRON KINETIC ENERGY,

PENRGY=R4PO2_(TWOCON*AA(1,3)+AA(1,1))

C COMPUTE FIELD ENERGY.

FENRGY=O,O

DO6999I=2,NF
6999 FENRGY=FENRGY+(AA(I'I)/(FLOAT(I-1)))_2

FENRGYmFENRGY_RECIPK
C COMPUTE TOTAL ENERGY.

TENRGY-FENRGY+PENRGY

WRITE(6t9OO2tTIME
C DECIDE WHETHER TO LIST FULL OR ABBREVIATED MATRIX AA(ItJ),

IF(MCOUNT,EQ.400) GO TO 6998
C WRITE ABBREVIATED MATRIX.

DO7044MZ=l,5
J=MZ
WR_TE(6,9OO1)(AA(I,J),I=I,NF)

7044 CONTINUE
C WRITE LABELS FOR ENERGIES.

WRITE(6,9004)
C WRITE ENERGIES.

WRITE(6,9OOS)FENRGY,PENRGY,TENRGY

C CHECK TO SEE IS OPERATOR WANTS TO END EXECUTION OF PROGRAM,
CALL SSWTCH(2,KTEST)

IF(KTEST.EQ.1) GO TO 17

GO TO 7050
6998 CONTINUE

C RESET COUNTER.

MCOUNT=O
C WRITE FULL MATRIX.

WRITE(6,9OIO)((AA(I_J),I=I,NF),J=I,NH)

C WRITE ENERGY LABELS.

WRITE(6,9004)

C WRITE ENERGIES.
WRITE(6,9005) FENRGY,PENRGY,TENRGY

7050 CONTINUE

17 CONTINUE
C PUNCH OUT INFORMATION FOR RELOADING PROGRAM.

WRITE(7,9013) TIME

DO4OII=I,NF

DO400 K=I,NH,5

400 WRITE(7,9012)I,K,AA{I,K),AA(ItK+l),AA(I,K+2),AA(I,K+3),AA(I,K+4)
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_01

8999
9000

9001

9002

9003
9004

CONTINUE
FORMAT(1H1,llX,2HNFtllX,2HNHtlOX96HDELTAT_18XI2HKO_9X96HEPSLON)
FORMAT(1HO910XtI3t8XtIStlOXgF6,3tlOX_FlO,6tlOXgF6,3)

FORMAT(1H 98(1X_E15,B))
FORMAT(1HOt23H MATRIX AT TIME' =93X_FIO,3)
FORMAT(1HOt21HSINE MATRIX AT TIME =93XgFlO,3)
FORMAT(1HOgBXt12HFIELD ENERGYt5X_15HPARTICLE ENERGYtSX9

1
9005
9006

9007
9008
9009

9010
9011
9012
9013

SENTRY HRMITE

12HTOTAL ENERGY)

FORMAT(1H ,3(9X,FII,8))

FORMAT(IHO,18HINCREMENTAL TIME =_3X_FIO,3)

FORMAT(1HO_FIOo3tlXtI3tIO(1XtEIO,3))
FORMAT(1HOtlO(3X,EIO.3))

FORMAT(1H ,16X,7(IX_E15oS))

FORMAT(1HO,6(4X,E15.8))

FORMAT(IH _15)
FORMAT(II_I4tS(E15,8))

FORMAT(F8,3)
CALL EXIT
END

#

24O
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TABLE 3

Conservation of Energy for Stable

k = 0.5, c = 0.i Case

Time Wp WE Wto t

0 0.50000000 0.0099999995 0.5099999995

5 0.5089508437 0.001049075 0.5099999187

i0 0.5099454681 0.000054294 0.5099997621

15 0.5099993128 0.000000351 0.5099996638

20 0.5099983083 0.000001253 0.5099995613

25 0.5099983230 0.000001153 0.5099994760

30 0.5099979577 0.000001403 0.5099993607

35 0.5099981054 0.000001153 0.5099992584

40 0.5099984337 0.000000701 0.5099991347

45 0.5099986821 0.000000350 0.5099990321

50 0.5099988311 0.000000100 0.5099988411
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TABLE 6

Summary of Stable Cases

Order of
Case k c

System Used

I Second 0.5 0.025

II Second 0.5 0.04

III Second 0.5 0.i

IV Second 0.5 0.25

V Third 0.5 0.25

VI Third 0.5 0.40

VII Second 1.0 0.i

VIII Second 1.0 0.2

IX Second 0.375 0.05

X Second 0.35 0.175
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TABLE 7

Comparison of Numerical Results with Theoretical

Results of Gary and Gorman, k = 0.5

co

j. f(2) (v, t) V2 dv
O

-oo
E

Numerical Theoretical Numerical Theoretical

o.o25

o.o4

0.i0

o.25

0.4

.0995

.o85o

.0449

> .ii

.08

.o48

0.0

0.O

0.00125 0.00125

0.0032 0.0032

0.020 0.020

0.125 0.125

0.320 0.32
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FIGURE CAPTIONS

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figures 8a, 8b.

t = 20.

Figures 9a, 9b.

i. Geometry for a plasma slab confined between perfectly

reflecting boundaries.

2. Numerical versus analytic solution of the free stream-

ing equation.

3. Numerical integration of the linearized Vlasov equation

for k = 0.5, e = 0.i.

4. Numerical integration of the second order system for

k = 0.5, e = 0.025, Case I.

5- Damping decrement versus time, Case I.

6. Numerical integration of the second order system for

k = 0.5, e = 0.04, Case II.

7- Damping decrement versus time, Case II.

Plot of f(2) (v, t) and f (v, t) for Case If,
o O

Same as Figures 8a, 8b except t = 35.

Figure i0. Numerical integration of the second order system

for k = 0.5, e = 0.i, Case III.

Figure ii. Damping decrement versus time for Case III.

Figures 12a, 12b.

t = i0.

Plot of f(2) (v, t) and f (v, t) for Case III,
O O

Figures 13a, 13b. Same as Figures 12a, 12b except t = 20.
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Figures 14a, 14b. Same as Figures 12a, 12b except t = 30.

Figure 15. Numerical integration of the second order system for

k = 0.5, c = 0.25, Case IV.

Figure 16. Damping decrement versus time for Case IV.

Plot of f(2) (v, t) and f (v, t) for Case IV,
o o

Figures 17a, 17b.

t = 5.0.

Figures 18a, 18b.

Figures 19a, 19b.

Same as Figures 17a, 17b except t = i0.0.

Same as Figures 17a, 17b except t = 15.0.

Figure 20. Numerical integration of third order system for

k = 0.5, c = 0.25, Case V.

Figure 21. Numerical integration of third order system for

k = 0.5, c = 0.4, Case VI.

Figure 22. Plot of the damping decrement versus time, Case VI.

Figure 23. Numerical integration of second order system for

k = 1.0, c = 0.i, Case VII.

Figure 24. Numerical integration of second order system for

k = 1.0, c = 0.2, Case VIII.

Figure 25. Damping decrement versus time for Case VIII.

Figure 26. Numerical integration of second order system for

k = 0.375, e = 0.05, Case IX.

Figure 27. Numerical integration of second order system for

k = 0.35, c = 0.175, Case X.

Figure 28. Damping decrement versus time for Case X.
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Figures 34a, 34b.

Case XII.

Figures 35a, 35b.

Case XII.

Figures 36a, 36b.

Figure 29 . Numerical integration of "quasi" system for k = 0.5,

= 0.i, Case XI.

Figure 30. Damping decrement versus time for "quasi"

Figure 31. Comparison of ZOl(t) for k = 0.5, _ = 0.i in

linear, second order, and "quasi" systems.

Figure 32. Comparison of first harmonics in Cases II, III, and

IV.

Figure 33. Numerical integration of Case XII for k = 0.5,

c = 0.01, b = 0, in second order.

Plot of f(2) (v, i0) and f (v, i0) for
o o

Plot of f(2) (v, 20) and f
o O

Plot of f(2) (v, 3o) and f
o O

Case XII.

(v, 20) for

(v, 30) for

Figure 38. Numerical integration of Case XIV for k = 0.6,

= 0.01, b = 0 in second order.

Figure 39. Comparison of theoretical f(2) (v, tA) [Gary and

Gorman, 1966] with numerical f(2_ (v, 20).
o

2
-v /2

Figure 40. Plot of 7(k) and _(k) for f (v) = e /V 2w
O

from linear theory (data courtesy S. P. Gary, 1966).

Figure 37. Numerical integration of Case XIII for k = 0.5,

c = 0.01, b = 0 in third order.
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